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h-BN on transition metal-surfaces

 thermal decomposition of borazine (HBNH)3

on hot TM metal surfaces (~1000K)

 forms simple (1x1) or very complex structures as seen by STM

 h-BN/Ni(111); Cu(111) h-BN/Rh(111); Ru(001); Pt(111)

C60 decoration



Strain energy of BN on TM(111)

Lattice missmatch

0.5eV/BN



Possible positions of B and N on Ni(111):

 Only N on „top“ of Ni gives stable structures

 (top,fcc) by only 9 meV/BN more stable than (top,hcp)
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STM-data of h-BN/Ni(111)

 Exp: three different sites are 
visible. Which site is dark? Which 
white ?
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Workfunction shift:

Intensity drop!

workfunction:

Ni h-BN/Ni

5.3 3.5 eV exp.

5.6 3.9 eV      theory

charge transfer
(Bader‘s AIM method):

N        B         Ni

free h-BN-l: -0.56  +0.56 e-

h-BN/Ni:      -0.59  +0.65  -0.06

electrostatic picture with 1A charge separation 2eV shift

additional 0.06e should fill Ni-dn states:  smaller moment



h-BN/Rh(111) superstructure

STM, h-BN/Rh(111) Normal emission UPS (21.2 eV)

h-BN/Rh(111)      C60 decorated

M.Corso et. al, Science, 303, 217 (2004)

● periodicity 3.2 nm, 3 different regions     ● σ band splitting (1 eV)

● corrugation ~0.5 -1 Å                                 ● indicates two species of BN
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Nanomesh- double layer model

● formation driven by Rh-BN lattice mismatch (7%)

 12x12 Rh / 13x13 BN superlattice

● two incomplete layers of h-BN 
● holes in h-BN can dock molecules or clusters

M.Corso et. al, Science, 303, 217 (2004)
naphthalocyanine

on h-BN/Rh(111)

(annealed at 550K)

Co clusters

T.Brugger

S.Berner etal.,

Angew.Chemie



double layer model – weak points?

 high energy costs due to broken BN bounds !

 no reason for second layer to be incomplete !

 STM measured corrugation is small compared to distance 
between layers in h-BN !

 interaction of h-BN with Rh(111) ?

 why is h-BN/Rh(111) so different from h-BN/Ni(111) and 
does not form a flat overlayer ?

 propose an alternative model, that explains observed STM
images and UPS σ band splitting ?



single layer model of the h-BN/Rh(111) 
nanomesh

 single continuous BN layer: 13x13 BN on top of 12x12 Rh(111)

DFT simulation:

 quite heavy: 3 layers TM + BN: 1108 atoms/cell (metal!)

 WIEN2k (all electron APW+lo full-potential calculations)

 Hamiltonian size ~50000-70000 (50-100GB memory)

 64-512 cores (Xeons), 120-20min per SCF iteration, 30 iterations/scf

 full structural optimization



corrugated h-BN layer on Rh(111)

R.Laskowski, P.Blaha, Th.Gallauner, K.Schwarz,
Single layer model of the h-BN nanomesh on the Rh(111) surface

Phys.Rev.Lett. 98, 106802 (2007)
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Single h-BN layer on TM(111)

Ab initio study of h-BN nanomeshes on Ru(001), Rh(111), and Pt(111)
R.Laskowski, P.Blaha,  PRB 81, 075418 (2010)

distance of N from metal layer (shown in 3x3 supercell)

● h-BN layer is corrugated,

amplitude ~ 0.5 (Pt) -1.6 (Ru,Rh) Å 

● flat region of BN close to metal

● surrounding rims are made of two

maxima with slightly different height

enhanced side view



Can the new model explain experiment ?



Comparing STM  images (Tersoff-Hamann)

+0.07V: Preobrajenski et al. PRB 75, 245412-2V: Goriachko et al., Langmuir 2007, 23, 2928

WIEN2k: -2 eV, 2A above surface WIEN2k: + 2eV, 3A above surface

“high” atoms have 
large DOS and high
density

“low” atoms have 
large DOS and high
density

EF



What binds BN to Rh ?

 BN at (fcc,top) position:

 attractive B forces dominate 
repulsive N-forces

 BN at (hcp, fcc) position:

 repulsive N-forces dominate 
attractive B-forces
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N 1s -XPS core level shifts

Ru

Rh

Pt

Core level shifts can be
explained by different
charge transfer at “low”
and “high” positions



B-K XANES in h-BN/Ni(111)

 B-K edge in BN and BN/Ni(111) 
 Preobrajenski etal, PRB70, 165404 (2004): “The experiments 

contradict recent DFT calculations by Grad etal.”



Angle dependency of B-K edge in h-BN/Ni(111)

 aaa
B-pxy

B-pz

B-p

p*-bands (they interact with Ni!)
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Magnetite Fe3O4

Magnetite is a natural mineral (lodestone)

 it is a permanent magnet (TC=858 K) 

and was used as first compass in 

ancient time

 technological important material

 magnetic recording

 biomagnetism (magnetoreception)

 catalyst for ammonia synthesis

 half-metallic ferromagnet (spintronics)

 corrosion

 Cubic spinel structure at room temperature

 “Verwey” transition at ~120 K



Magnetite Fe3O4

Fe3O4, magnetite phase transition between a mixed-valence
and a charge-ordered configuration

2 Fe2.5+
 Fe2+ + Fe3+

cubic inverse spinel structure AB2O4

Fe2+
A (Fe3+,Fe3+)B O4

Fe3+
A (Fe2+,Fe3+)B O4

B

A

 small, but complicated  coupling between lattice and charge order

Verwey transition (1939)

Fetet

Feoct



Feoct-terminated Fe3O4 (001) surfaces

 stimulated by U. Diebold (Z.Novotny et al., PRL 108, 216103 (2012))

 Feoct
2.5+O2 - planes, forming „rows“ along [110]

 Fetet
3+ - planes

 Feoct
2.5+O2 - planes, forming „rows“ along [1-10]

…….

 surface Feoct atoms are all 

Fe3+ to compensate (partly)

the charged surface layer

Fetet

O    Feoct



DFT calculations using WIEN2k

An Augmented Plane Wave Plus Local Orbital 

Program for Calculating Crystal Properties

Peter Blaha et al. (Vienna University of Technology)

http://www.wien2k.at

~2700 licences

• surface slab calculations using
(√2×√2)-17  and (2×2)-17 layer 
models (up to 248 atoms/cell) 

• GGA+U (Fe-3d: U=3.8 eV)

• Rkmax=7, 3x3x1 k-points



In STM, 

we see 

the Feoct

atoms

found by R. Pentcheva et al., PRL 94, 126101 (2005)

Fe3O4(001) exhibits (√2x√2)R45° superstructure due to 
small lateral relaxations of surface atoms (≈ 0.1 Å)

(4.38 x 6.43) nm2

1 V, 0.1 nA

The Fe3O4(001) Surface

FeoctFetetO H

Structure determined by DFT and LEED-IV:

explained by DFT+U calc.: Lodziana, PRL 99, 206402 (2007):
charge and orbital order in sub-surface FeoctO2-rows



In STM, 

we see 

the 

Feoct

atoms

FeoctFetetO

N

W

NW

Two obvious sites for ad-atom adsorption:

Bulk continuation Fetet sites “W” and “N”

The Fe3O4(001) Surface

(4.38 x 6.43) nm2

1 V, 0.1 nA

H



Au atoms on Feoct terminated Fe3O4:

experiments in U.Diebolds group:

Z.Novotny et al., PRL 108, 216103 (2012)

single Au atoms stable up to 400 C

Au adsorbs exclusively on 
narrow site



In STM, 

Au, Ag, 

Pt, Pd 

adsorb 

only at 

the N

site.

FeoctFetetO

N8.4 
Å

The Fe3O4(001) Surface

DFT does not find any difference between Me-
adsorption on the W or N site
G.Parkinson et al., Nature Mat. 12, 724 (2013)

something must block this site !!!

H

W×



A new structural model for Fe3O4(001)

Surface reconstruction including non-stoichiometry ?

 Pentcheva (and we also) have tried 

several different O-vacancy structures

- non of them are stable.

Fe-oxides contain mostly Fe-vacancies, not O-
vacancies

g-Fe2O3: Maghemite is a “Magnetite” with 1/6 Feoct

vacancies

Subsurface cation vacancy structure



Fe3O4(001) surface reconstruction

Fetet-interstitial +

Distorted bulk truncation                   sub-subsurface Feoct

vacancies

new model:   much stronger Feoct corrugation

Feoct
Fetet

O

Fevac



Thermodynamic stability

previous calculations

The subsurface vacancy model is
more stable than bulk-termination



Quantitative LEED IV-measurements

 Pentcheva et al. 2008: Refinement of the distorted bulk-
terminated structure with R=0.34

 new exp. by L.Hammer: new model refines to R=0.12

old exp. can be refined with new model to the same R=0.12

 refined exp. positions 

 and theor. positions

 agree within 0.05 Å

 (all within the exp. error)



Au adatom adsorption blocked by Feint

adsorbtion site

blocked site

But: the blocked site is the N site  (in contrast to exp.) !!??

Feint blocks selectively adatom adsorption on this site 



STM measurements and simulations

 large corrugation at low bias voltage (narrow site at   x)



STM measurements and simulations

 at intermediate bias the rows „straighten“



STM measurements and simulations

 at large bias the previous „narrow“ site looks „wide“



STM probes charge densities, not atomic positions

N              W

W            N

W            N



STM with different bias voltage

 “N” site is actually the “wide” site for low bias

 “N” and “W” change in STM with the bias voltage

 STM probes electron densities, not “atomic positions”

W



Summary

 The new SCV-model of the Fe3O4 (001) surface explains

 LEED-IV measurements

 fixes polar catastrophe

 explains STM images (bias dependency)

 explains site-selective TM-atom adsorption

 spintronics problems

 allows investigations of „single-atom“ catalysis (CO oxidation with Pt)

FeA
FeB

A

VV
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